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ABSTRACT

Diffusion-based models for robotic control, including vision-language-action
(VLA) and vision-action (VA) policies, have demonstrated significant capabili-
ties. Yet their advancement is constrained by the high cost of acquiring large-scale
interaction datasets. This work introduces an alternative paradigm for enhancing
policy performance without additional model training. Perhaps surprisingly, we
demonstrate that the composed policies can exceed the performance of either par-
ent policy. Our contribution is threefold. First, we establish a theoretical foun-
dation showing that the convex composition of distributional scores from multi-
ple diffusion models can yield a superior one-step functional objective compared
to any individual score. A Grönwall-type bound is then used to show that this
single-step improvement propagates through entire generation trajectories, lead-
ing to systemic performance gains. Second, motivated by these results, we pro-
pose General Policy Composition (GPC), a training-free method that enhances
performance by combining the distributional scores of multiple pre-trained poli-
cies via a convex combination and test-time search. GPC is versatile, allowing
for the plug-and-play composition of heterogeneous policies, including VA and
VLA models, as well as those based on diffusion or flow-matching, irrespective
of their input visual modalities. Third, we provide extensive empirical validation.
Experiments on Robomimic, PushT, and RoboTwin benchmarks, alongside real-
world robotic evaluations, confirm that GPC consistently improves performance
and adaptability across a diverse set of tasks. Further analysis of alternative com-
position operators and weighting strategies offers insights into the mechanisms
underlying the success of GPC. These results establish GPC as a simple yet effec-
tive method for improving control performance by leveraging existing policies.
Our project page is in https://sagecao1125.github.io/GPC-Site/.

1 INTRODUCTION

Diffusion Policies (DPs) (Chi et al., 2023; Ho et al., 2020; Song et al., 2020a) have emerged as a pow-
erful method for policy parameterization in robot learning, enabling the representation of complex,
multi-modal action distributions – a key advantage for policies conditioning on high-dimensional
inputs like vision and language in domains from manipulation (Ze et al., 2024b; Zhu et al., 2024;
Liu et al., 2024a) to navigation (Sridhar et al., 2024; Zhang et al., 2024a). Despite this progress,
the advancement of diffusion- and flow-based policies is fundamentally constrained by scaling chal-
lenges related to both model capacity and data availability. Performance can plateau due to the
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Figure 1: Illustration of General Policy Composition. (a) Distributions from pre-trained state-
of-the-art diffusion- or flow-based policies can be composed to construct a stronger policy without
additional training, with a test-time search over composition weights picking the best parent-policy
mix; score composition corresponds to the product of probabilistic density functions (PDFs), steer-
ing sampling toward consensus regions. (b) GPC can yield consistent gains across a diverse set of
tasks. (c) We find the optimal weight when composing two models can vary depending on the task.

intrinsic representational limits of a given model, yet scaling up the model architecture also requires
the collection of costly interaction datasets to fully capture the potential performance benefit (Black
et al., 2024). Conventional post-training strategies offer limited solutions; supervised fine-tuning
requires expensive data collection (Ouyang et al., 2022), while reinforcement learning introduces
the complexity of reward engineering and extensive online interaction (Hu et al., 2025).

To overcome these limitations, this work introduces an alternative paradigm: creating stronger poli-
cies by composing existing, pre-trained models. While prior work has explored static model compo-
sition (Du & Kaelbling, 2024; Wang et al., 2024c), we find that the optimal weighting is not universal
but is instead highly task-dependent, even for a fixed set of parent policies. Drawing inspiration from
compositional generative modeling, we first establish a theoretical foundation showing that a convex
combination of distributional scores can yield a provably superior objective for policy improvement.
This principle underpins our proposed method of General Policy Composition (GPC, Fig. 1). GPC
is a training-free framework that, at inference time, combines the distributional scores of multiple
pre-trained policies via convex combination and test-time search. This approach flexibly integrates
heterogeneous models – spanning diffusion- and flow-based architectures, VA and VLA modalities,
and diverse sensory inputs – to form a more capable policy, all without modifying the base models.
Crucially, we demonstrate that the resulting composed policy can exceed the performance of any of
its individual parent policies.

We validate GPC through extensive experiments in both simulation and real-world environments,
demonstrating consistent outperformance against single-policy baselines. Our analysis extends to
alternative composition operators (e.g., logical AND/OR) and various weighting configurations, of-
fering broader insights into why and when composition is effective. Our contributions are summa-
rized as follows: (i) We establish a theoretical foundation for robot policy composition, proving that
the convex combination of distributional scores can yield an improved functional objective and that
this advantage propagates to the system level. (ii) We propose General Policy Composition (GPC), a
flexible, training-free framework that combines pre-trained policies across different modalities and
architectures into a more expressive policy. (iii) We conduct extensive evaluations in simulation and
the real world, demonstrating the consistent performance gains of GPC while analyzing key design
choices to guide future research in policy composition.

2 RELATED WORK

Composable Generative Models. Composability refers to the ability to combine multiple compo-
nents or distributions into a unified representation while preserving the properties of the individual
elements. (i) Visual Generation: Energy-based models (EBMs) (Hinton, 2002; Du & Mordatch,
2019; Grathwohl et al., 2020) support compositionality by summing energies, allowing factor-level
combinations. Du et al. (2020) unified perspectives of compositionality for visual generation. Liu
et al. (2021) further improved EBMs for scene generation by factorizing relational structures. Skreta
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et al. (2024) introduced the superposition of diffusion models by using itô estimation. (ii) Language
Generation: Du et al. (2023b) combined outputs using multi-agent debate for robust language gen-
eration. Lifshitz et al. (2025) proposed multi-agent verification at test-time for improvement.

Diffusion Models in Robot Learning. Due to their flexibility and representational power, diffu-
sion models (Ho et al., 2020; Song et al., 2020a; Nichol & Dhariwal, 2021) offer a novel way to
represent policies. The concept of Diffusion Policy (Chi et al., 2023) was first proposed to model
action spaces using diffusion, significantly enhancing expressiveness. Since then, numerous ad-
vancements have been made: multimodal DP such as MDT (Reuss et al., 2024), trajectory extraction
approaches like AWE (Shi et al., 2023). DP3 (Ze et al., 2024b) utilizes point cloud representations
to achieve state-of-the-art performance, and VLA models, e.g., Octo (Team et al., 2024), π0 (Black
et al., 2024) and RDT (Liu et al., 2024a). In this work, our GPC can be adopted to various general
diffusion-based (e.g., DP, DP3, MDT, and RDT) or flow-based policies (e.g., flow policy and π0),
demonstrating great flexibility (Detailed in App. G).

Compositional Diffusion Models in Robotics. Recent work has explored the use of composi-
tional diffusion models in robotics. Janner et al. (2022) applied compositionality to diffusion-based
planning. Yang et al. (2023b) tackled continuous constraint satisfaction in robotic planning, and
Luo et al. (2024) improved motion planning by learning potential fields. In addition, Policy Com-
position (PoCo) (Wang et al., 2024c) does constraint-based, task-based, and input modality-based
composition; however, it does not explore the weights between policies. Moreover, it has not been
validated in widely adopted simulation environments and provides limited analysis of the underlying
composition mechanisms. In contrast, our proposed GPC framework offers broader generality by
enabling composition across both VA and VLA models, regardless of input visual modality, and we
also deliver deeper insights into the task-dependent weight searching for policy composition.

3 PRELIMINARIES

Diffusion models (Sohl-Dickstein et al., 2015) are based on a generative process that iteratively
denoises a random noise distribution to generate samples. The following equation describes the
update rule for the diffusion process based on Langevin dynamics (Song et al., 2020b):

τt´1 “ αt τt ` βt sθpτt, tq ` γt η, η „ N
`

0, σ2
t I

˘

, (1)

where sθpτt, tq denotes the learned score function, αt, βt, γt are coefficients determined by the noise
schedule and the choice of solver. Different sampling methods, such as DDPM (Ho et al., 2020),
DDIM (Song et al., 2020a), or ODE/SDE-based solvers (Song et al., 2020b), can be recovered by
specifying these coefficients accordingly.

Closely related to diffusion models are energy-based models (Hinton, 2002; Du & Mordatch, 2019),
which define probability distributions through learnable energy functions. The connection arises
because the gradient of the energy function in EBMs plays a role analogous to the score function
in diffusion models. Further progress is made with compositional EBMs (Du et al., 2020), where
multiple energy functions can be combined by summing their contributions.

4 THEORETICAL ANALYSIS OF CONVEX SCORE COMPOSITION

We first provide a mathematical justification for why convex score composition can improve policy
performance. Our analysis shows that (i) at the functional level, convex combinations of scores
from pre-trained policies can yield lower score error, and (ii) at the system level, sampling error is
bounded by score error through the stability of the sampling dynamics. These results establish con-
vex score composition as a principled foundation for policy improvement, which directly motivates
our proposed General Policy Composition framework (in Sec. 5).

4.1 FUNCTIONAL-LEVEL IMPROVEMENT

We begin with the question of whether combining score estimators can yield better approximations
to the true score s˚. The following result shows that there exists a convex combination of two
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Figure 2: Overview of our proposed General Policy Composition. Combining distributional
scores from pre-trained diffusion-based or flow-based policies on different conditions (e.g., visual
modalities and network backbones), GPC can generate expressive and adaptable action trajectories
through convex score combination without additional training.

estimators whose error is no greater than that of the better individual estimator, and strictly smaller
unless their errors are perfectly aligned.

Proposition 4.1 (Single-step improvement via convex combination). Let two score estimators
be ε1 “ s˚ `b1 `η1 and ε2 “ s˚ `b2 `η2, with deterministic biases bi and random zero-mean
noise ηi that plays the role of the diffusion component in the time-reversed stochastic dynamics
(e.g., a reverse-time ODE). For any convex weight w P r0, 1s, define εpwq “ wε1 ` p1 ´ wqε2.
Then the mean-squared error Qpwq “ E}εpwq ´ s˚}2 is a convex quadratic in w. Its minimizer
w‹ satisfies

Qpw‹q ď mintQp0q, Qp1qu,

with strict inequality whenever the two models’ errors are not perfectly aligned.

See proof in App. B. Intuitively, each estimator deviates from the true score in a different way. A
convex combination can cancel out these errors, achieving a better score estimator. Unless the two
models make identical errors, the true score s˚ lies closer to some interior point, ensuring that a
weighted average achieves smaller error. This establishes that convex score composition can reduce
estimation error at each step.

4.2 SYSTEM-LEVEL STABILITY

While Prop. 4.1 shows improvement at the functional level, it remains to understand how score errors
propagate into trajectory sampling. The following proposition establishes a stability guarantee: the
terminal error is controlled by the cumulative score error.

Proposition 4.2 (Score-to-sample stability). Let x˚ptq denote the oracle trajectory derived from
the true score s˚, and xŝptq denote the approximate trajectory derived from an estimator ŝ, both
starting from the same initial condition. They satisfy

9x˚ptq “ F pt, x˚ptq, s˚pt, x˚ptqqq, 9xŝptq “ F pt, xŝptq, ŝpt, xŝptqqq,

where F represents the underlying dynamics that map the score into the state update. Suppose
F is Lipschitz in px, sq with constants Lxptq, Lsptq, and ŝ is Lipschitz in x with constant Λ̂ptq.
Assume the score error admits a uniform bound κptq. Define L̃ptq “ Lxptq ` LsptqΛ̂ptq. Then
for all T ą 0,

E }xŝpT q ´ x˚pT q} ď

˜

ż T

0

e 2
şT
t

L̃pτq dτ Lsptq2 dt

¸1{2˜

ż T

0

κptq2 dt

¸1{2

.

See proof in App. C. This result shows that the sampling dynamics are stable: the terminal error
grows at most exponentially with the Lipschitz constants, and is directly bounded by the integrated
score error. Thus, reducing score error at each step translates to reducing the overall trajectory error.
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4.3 IMPLICATIONS FOR POLICY COMPOSITION

Combining Prop. 4.1 and Prop. 4.2 yields a direct implication for composed policies.

Corollary 4.1 (Convex score combination can reduce overall sampling error). If a convex com-
bination scomp “ ws1 ` p1 ´ wqs2 satisfies

ż T

0

E}scomp ´ s˚}2dt ă min
i

ż T

0

E}si ´ s˚}2dt,

then
E}xscomppT q ´ x˚pT q} ă min

i
E}xsipT q ´ x˚pT q}.

See proof in App. D. Once functional-level improvement is established by obtaining an optimal
w˚ (Prop. 4.1), stability ensures this advantage propagates along the trajectory (Prop. 4.2), making
convex score composition provably superior to relying on individual scores.

This theoretical analysis provides a clear justification for convex score composition: it can improve
accuracy at each functional step and propagate this advantage through stable sampling dynamics,
leading to system-level gains. These results directly motivate GPC, which leverages convex score
combination to build stronger policies from pre-trained components. While the theory guarantees
the existence of optimal weights, finding them analytically is intractable; hence, in practice we
employ test-time searching to identify effective weighting strategies, as explored in Sec. 6.

5 OUR METHOD: GENERAL POLICY COMPOSITION

Building on the mathematical foundation in Sec. 4, we now present our method, General Policy
Composition, as illustrated in Fig. 2. The key idea is to leverage convex score composition to
combine multiple pre-trained policies into a stronger and more expressive one. We first revisit the
mathematical formulation of compositional diffusion models in Sec. 5.1, which provides a basis
for composing policies conditioned on different factors. We then introduce our method in Sec. 5.2,
where GPC convexly combines the scores of diffusion or flow-based policies across modalities, ar-
chitectures, or VA/VLA settings. Finally, we extend this framework in Sec. 5.3 to include alternative
composition operators, offering a broader view of policy composition beyond convex averaging.

5.1 COMPOSITIONAL DIFFUSION MODELS

The key idea of the compositional diffusion model (CDM) is to model the distribution of a trajectory
τ conditioned on multiple concepts ci, similar to the compositional EBMs. Mathematically under
an independence assumption, we can express the joint probability of the trajectory τ based on the set
of concepts tc1, . . . , cnu in Eq. 2, and further reformulate the conditional terms by parameterizing

ppci|τq9

´

ppτ |ciq

ppτq

¯α

, as follows:

ppτ |c1, . . . , cnq 9 ppτ, c1, . . . , cnq “ ppτq

n
ź

i“1

ppci|τq, (2)

9 ppτq

n
ź

i“1

ˆ

ppτ |ciq

ppτq

˙α

, with ppci|τq9

ˆ

ppτ |ciq

ppτq

˙α

, (3)

where ppci|τq can be interpreted as an implicit classifier (Ho & Salimans, 2022) and α serves as a
weighting factor that modulates the influence of each concept on the overall trajectory distribution.

Then, the score function of the composed distribution can be derived directly from Eq. 3:

∇τ log ppτ |c1, . . . , cnq “ ∇τ log ppτq `

n
ÿ

i“1

α
`

∇τ log ppτ |ciq ´ ∇τ log ppτq
˘

. (4)
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Figure 3: Visualization results of different diffu-
sion policies and the composed policy with GPC.
Our proposed GPC can be successful even when one
part of the DP fails, and shows better performance
when both parts of the DP work.

Alg. 1: General Policy Composition Sampling
Input: Pre-trained policies π1, π2, weights w1, w2

(i.e., 1 ´ w1), policies’ conditions c1, c2
1: Initialize noise trajectory τN „ N p0, Iq

2: for w1 “ 0.0, 0.1, . . . , 0.9, 1.0 : // test-time searching
3: for t “ N, . . . , 1 : // denoising steps
4: s1 Ð π1pτt, t, c1q

5: s2 Ð π2pτt, t, c2q # score estimation
6: ŝcomp Ð w1 ˚ s1 ` w2 ˚ s2 # score composition
7: τt´1 Ð αt τt ` βt ŝcomp ` γt
8: Return: Action trajectory τ0
9: Evaluate SR and store in reward pools Rpw1q

Return: Optimal weights w˚
1 Ð argmaxw1 Rpw1q

Algorithm 1: GPC Sampling. Policies are combined
via test-time score composition into a stronger policy.

Using the relationship between the score function of the distribution and noise (Bao et al., 2022), i.e.,
ϵθpτt, tq “ ´στ∇τ log ppτq, we can express the update rule for CDM with the ϵ parameterization :

ϵ̂pτt, t, cq “ ϵθpτt, tq `

n
ÿ

i“1

wi

`

ϵθpτt, t, ciq ´ ϵθpτt, tq
˘

, (5)

where ϵθpτt, t, ciq{ϵθpτt, tq represents the noise estimation at time step t for trajectory τt conditioned
on the individual concept ci or without condition. The weights wi modulate the influence of each
concept on the overall noise estimate. This formulation represents a generalization of the classifier-
free guidance (CFG) (Ho & Salimans, 2022) technique commonly used in generative models.

5.2 GENERAL POLICY COMPOSITION

Based on the previous foundation, we can now apply the CDM to diffusion policy for robotic tasks.
The joint probability distribution of the trajectory conditioned on different modes ci (e.g., different
visual modality input or different model architecture) can be expressed as follows:

ppτ |c1, . . . , cnq 9 ppτ |c1qppτ |c2q ¨ ¨ ¨ ppτ |cnq. (6)

While one could in principle apply CFG sampling as in Eq. 5, our theoretical analysis in Sec. 4 shows
that convex combinations of scores can provide a better functional objective and propagate stability
through sampling dynamics. Motivated by this result, we construct our compositional policy by
directly combining the score functions from multiple conditional diffusion policies via convex com-
bination. This formulation not only inherits the stability guarantees established in theory but also
enables flexible integration of diverse conditional information.

Formally, let ŝcomppτt, t, cq denotes the composed score, the update rule of GPC is defined as:

ŝcomppτt, t, cq “

n
ÿ

i“1

wisθpτt, t, ciq, with
n

ÿ

i“1

wi “ 1, (7)

where sθpτt, t, ciq denotes the score estimate conditioned on concepts ci (e.g., visual modality or
policy architecture), and wi represents the weight of convex combination assigned to each concept,
ensuring a balanced contribution from all source distributions in the final trajectory estimate.

This convex combination ensures that the composite score remains within the feasible convex hull
of individual policies, preventing divergence toward extreme or unstable behaviors. Intuitively, the
GPC formulation balances information from different conditions, yielding a more stable and coher-
ent generative trajectory (e.g., Fig. 3). GPC sampling process is shown in Alg. 1.

5.3 GPC WITH SUPERPOSITION

Apart from using the score convex combination, our GPC framework naturally connects to the prin-
ciple of superposition (Skreta et al., 2024), which encompasses: (i) Logical OR corresponds to sam-
pling from a mixture of distributions, which is implemented by weighting with the softmax function
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Table 1: Experiment results on Robomimic and PushT. The table shows the success rate Ò. Our
GPC yields a noticeable average improvement compared with the base policies.

Method Generative Mode Model Type Robomimic PushT
Can Lift Square PushT Average

Base Policies
Diffusion Policy (DP) Diffusion VA 34.50 98.50 2.00 21.75 39.19
Mamba Policy (MP) Diffusion VA 5.00 98.50 3.00 12.06 29.64
Flow Policy (FP) Flow Matching VA 95.00 13.00 77.50 54.25 59.94
Florence Policy-D Diffusion VLA 61.50 97.00 46.50 40.00 61.25
Florence Policy-F Flow Matching VLA 89.00 98.50 88.50 39.38 78.84
π0 Flow Matching VLA 96.50 99.00 92.50 57.69 86.42

Composed Policies via Convex Score Combination
DP+MP Diffusion VA & VA 34.50 99.50 8.00 23.63 41.41 +2.22%
Florence-Policy-D+DP Diffusion VLA & VA 62.50 100.00 61.50 43.06 66.76 +5.51%
Florence-Policy-D+MP Diffusion VLA & VA 63.00 100.00 54.50 40.88 64.60 +3.35%
Florence-Policy-F+FP Flow Matching VLA & VA 98.50 98.50 92.50 56.06 86.39 +7.55%
π0+FP Flow Matching VLA & VA 99.50 100.00 94.00 62.25 88.94 +2.52%

Table 2: Experiment results on RoboTwin with 6 diverse bimanual manipulation tasks. GPC
achieves an obvious increase with up to 7% improvement on the success rate.

Method Model Type RoboTwin 2.0
Hanging Mug Open Laptop Place Burger Fries Put Object Cabinet Stack Bowls Three Turn Switch Average

Base Policies
DPimg VA 0.10 0.74 0.49 0.56 0.52 0.38 0.46
DPpcd VA 0.21 0.93 0.72 0.71 0.64 0.71 0.65
RDT VLA 0.13 0.69 0.46 0.32 0.47 0.30 0.40

Composed Policies via Convex Score Combination
DPimg + DPpcd VA & VA 0.23 0.93 0.78 0.82 0.71 0.71 0.70 +5%
RDT + DPimg VLA & VA 0.18 0.80 0.57 0.59 0.66 0.38 0.53 +7%
RDT + DPpcd VLA & VA 0.36 0.94 0.83 0.78 0.73 0.71 0.72 +7%

at each sampling time: w1´t
i “ softmax

`

T log ptpτ |ciq ` ℓ
˘

, where w1´t
i determines the relative

contribution of each policy’s score in sampling time t, T and l are constants; (ii) Logical AND
enforces agreement among policies, corresponding to the intersection of their distributions. This is
achieved by solving a linear system to compute the weights such that d log ptpτ |ciq “ d log ptpτ |cjq,
ensuring consistency across different policies during sampling. In this work, we leverage these for-
mulations to instantiate GPC with logical OR and AND operators as the application in Sec. 6.4.

6 EXPERIMENT

We conduct experiments to investigate three key questions: (i) How does GPC perform in simulation
and real-world experiments? (ii) How do different weight configurations influence the performance
of GPC across various scenarios? (iii) How can the advantages of the composed DP be explained?

6.1 EXPERIMENT SETTINGS

Environment Settings. We evaluate on Robomimic (Mandlekar et al., 2022), which includes three
manipulation tasks (Can, Lift, Square), PushT (Florence et al., 2021), and RoboTwin (Mu et al.,
2025), a suite of dual-arm collaborative tasks where we select representative ones from versions 1.0
and 2.0 (Chen et al., 2025). We further perform four real-world experiments: Place Bottles, Hang
Mug, Close Table, and Punch Holes, with the setups in Fig. 6. More details are in App. H.

Baselines. For Robomimic and PushT, we compare against three VA models: DP (Chi et al., 2023),
Mamba Policy (MP) (Cao et al., 2025b), Flow Policy (FP, the flow matching version of DP), and
three VLA models: Florence-based MDT (Reuss et al., 2024), Florence-based Flow-based MDT,
and a revised π0 (Black et al., 2024) built upon Florence VLM (Xiao et al., 2024). For RoboTwin,
we adopt two VA models: DP, DP3 (Ze et al., 2024b), and a VLA model RDT (Liu et al., 2024a).

Training and Testing Details. Since GPC is training-free, we directly use pre-trained policies
trained based on their original settings (App. H). Each setting is evaluated over 200 rollouts (100 for
RoboTwin), and we report the average success rate (SR). For composition, we employ our GCP and
search over weighting coefficients from 0.0 to 1.0 in steps of 0.1.
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Table 3: Experiment results of our method under different composition configurations. These
results highlight GPC’s versatility and the importance of weight tuning across policies.

Scenario Task DPimg DPpcd
Weight Scheduling in GPC

∆
0.1˚ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Both Policies
Perform Well

Empty Cup Place 0.42 0.62 0.70 0.86 0.84 0.86 0.84 0.84 0.76 0.68 0.61 +24%
Dual Bottles Pick (Hard) 0.49 0.64 0.69 0.63 0.71 0.66 0.64 0.65 0.63 0.56 0.58 +7%
Shoe Place 0.37 0.36 0.47 0.52 0.56 0.59 0.60 0.59 0.59 0.53 0.41 +23%

Both Policies
Perform Bad

Dual Shoes Place 0.08 0.23 0.19 0.17 0.19 0.20 0.20 0.17 0.16 0.14 0.09 +0%
Pick Apple Messy 0.05 0.26 0.25 0.17 0.21 0.15 0.13 0.08 0.08 0.06 0.08 +0%

Policy A ą Policy B Dual Bottles Pick (Easy) 0.77 0.36 0.52 0.64 0.70 0.75 0.82 0.81 0.80 0.85 0.80 +8%
Policy A ă Policy B Block Hammer Beat 0.00 0.76 0.61 0.3 0.18 0.15 0.12 0.07 0.00 0.00 0.00 +0%
˚: The number set t0.1, ..., 0.9u denotes the weight of DPimg (i.e., w1), corresponding to the noise estimation of GPC as ϵ̂M˚ “

w1 ˚ ϵDPimg ` w2 ˚ ϵDPpcd . When w1 equals to 0.0 and 1.0, GPC degenerates into DPpcd and DPimg, respectively.

DPimg w1=0.7, w2=0.3

w1=0.4, w2=0.6 w1=0.3, w2=0.7

SR=0.49 SR=0.63 SR=0.64

SR=0.64 SR=0.66 SR=0.71

RoboTwin

DPpcd

w1=0.5, w2=0.5 Florence Flow w1=0.7, w2=0.3 w1=0.9, w2=0.1

FlowP w1=0.2, w2=0.8 w1=0.1, w2=0.9

SR=0.89 SR=0.92 SR=0.90

SR=0.95 SR=0.98 SR=0.98

Robomimic Can

(a) Sample Distribution under Different Modality (b) Sample Distribution under Different Models

Figure 4: Visual analysis of GPC under different compositions. GPC gen-
eralizes across (a) modalities and (b) architectures, with appropriate weighting
yielding accurate distributions with better SR than individual policies.
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Figure 5: Sample distribu-
tion through execution time.
GPC yields more coherent
distributions than baselines.

6.2 MAIN RESULTS: GPC ACROSS ARCHITECTURES AND MODALITIES

Simulation Results. Our results demonstrate that GPC is broadly applicable across both diffusion-
and flow-based policies, and works under a range of general settings: (i) Same input modality,
different architectures. GPC successfully composes policies trained on the same modality but with
different network architectures. For instance, in Tab. 1, combining two VA policies (DP+MP) yields
a noticeable average improvement of +2.22% over the base policies, while combining a VA and
VLA model (Florence-D+DP) achieves a larger increase of +5.51%. (ii) Different modalities, similar
architectures. GPC also supports the integration of heterogeneous modalities. In Tab. 2, combining
RGB-based and point cloud-based DPs (DPimg+DPpcd) improves the average SR from 0.46/0.65 to
0.70 (+5%), confirming that convex score composition can exploit complementary information even
within the same sensory domain. (iii) Different modalities, different architectures. GPC enables
flexible integration across modalities and architectures. For example, combining a VLA model
with a VA policy (RDT+DPpcd) produces consistent improvements, raising the average SR to +7%
compared to DPpcd, and surprisingly, +32% compared to RDT itself.

Real-world Results. In real-world evaluations (in Tab. 5), GPC shows consistently stronger perfor-
mance than single-policy baselines. For instance, in the Clean Table task it achieves 14/20 successes,
surpassing base policies. Similarly, it delivered gains in Place Bottles (13/20 vs. 7/20 and 11/20).

Overall, to answer question one, across diverse tasks and benchmarks, GPC consistently improves
performance, with an average increase of up to +7.55% on Robomimic & PushT, +7% on RoboTwin,
and +10% in real-world tasks. These results validate that convex score composition provides a robust
and general principle for composing policies, regardless of model type or input modality.

6.3 INFLUENCE OF WEIGHT CONFIGURATIONS ON GPC PERFORMANCE

To analyze the second question, we evaluate GPC performance across multiple tasks under different
weight configurations in Tab. 3. Several findings are summarized:

Finding 1: When both policies have moderate accuracy (e.g., ą30%), GPC often achieves
higher accuracy under appropriate weight configurations compared to base policies. For in-
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Table 4: Results of GPC with superposition, highlighting
performance increase by strong compositional operators.

Method Robomimic PushT
Can Lift Square PushT Average

Base Policies
Diffusion Policy (DP) 34.50 98.50 2.00 21.75 39.19
Mamba Policy (MP) 5.00 98.50 3.00 12.06 29.64
Florence Policy-D 61.50 97.00 46.50 40.00 61.25

Composed Policies via Logical AND Composition
DP+MP 84.00 99.50 48.00 28.18 64.92 +25.73%
Florence-Policy-D+DP 90.50 100.00 90.00 36.31 79.20 +17.95%
Florence-Policy-D+MP 83.00 100.00 90.00 37.38 77.60 +16.35%

Composed Policies via Logical OR Composition
DP+MP 82.50 99.50 44.00 29.13 63.78 +24.59%
Florence-Policy-D+DP 83.50 100.00 89.00 37.87 77.59 +16.34%
Florence-Policy-D+MP 86.50 100.00 86.50 38.44 77.86 +16.61%

Table 5: Real-world experiment results,
demonstrating the effectiveness of GPC.

Method Place Bottles Hang Mug Clean Table Punch Holes
DPimg 7/20 5/20 12/20 7/20
DPpcd 11/20 6/20 7/20 6/20
GPC (ours) 13/20 7/20 14/20 9/20

GPC

DPimg

DPpcd




Figure 6: Real-world setup and results.

stance, in the Empty Cup Place task, DPimg and DPpcd achieve 0.42 and 0.62, respectively, while
GPC peaks at 0.86 (+24%) with w1“0.4, surpassing both unimodal DPs. This improvement re-
flects the composition of diffusion scores capturing a more generalized distribution that reduces the
reliance on specific conditions, consistent with the theoretical advantages of compositional models.

Finding 2: When one policy has significantly lower accuracy, GPC struggles to surpass the
highest accuracy of the better-performing base policies. For example, in the Pick Apple Messy
task, DPpcd achieves 0.26 and DPimg achieves only 0.05. GPC peaks at 0.25, falling short of DPpcd.
This suggests that low-accuracy scores from weaker modalities can significantly impact the joint
distribution, diminishing the overall performance of the composed policy.

Finding 3: The improvement of GPC is always maximized when the better-performing base
policy holds a larger weight in GPC. For instance, in Dual Bottles Pick (Easy), where DPimg
achieves 0.77, GPC reaches 0.85 with w1“0.8, leveraging the stronger DP effectively. This high-
lights the necessity of assigning higher weights to the better-performing distribution to maximize
the effectiveness of GPC, leading the composed policy toward consensus.

These findings highlight GPC’s versatility in leveraging the strengths of different conditions and the
importance of appropriately tuning weights to each policy’s performance.

6.4 COMPREHENSIVE ANALYSIS OF GPC EFFECTIVENESS

Analysis on GPC’s Superiority via Visualization. For the third question, Fig. 4 illustrates how
GPC improves sample distributions under different settings: (i) GPC under different modalities.
In Fig. 4(a), DPimg and DPpcd learn distinct distributions. By adjusting the convex weights, GPC
adapts smoothly between them. e.g., at w1“0.3, the composed distribution achieves SR=0.71, sur-
passing both unimodal policies. This demonstrates how GPC leverages knowledge from different
modalities to form a more complete distribution. (ii) GPC under different architectures. In Fig. 4(b),
both Florence Flow and FlowP learn broadly similar distributions, yet each exhibits localized biases.
Through convex composition, GPC expands coverage and enhances precision. e.g., combining poli-
cies at w1“0.2 yields 0.98 SR, higher than either base policy. This shows that even when base mod-
els learn similar representations, GPC refines their alignment and achieves stronger performance.
Overall, these visualizations confirm that GPC generalizes across modalities and architectures, with
appropriate weighting yielding broader and more accurate distributions than individual policies.

Analysis on Execution-Time Sample Distributions. Fig. 5 shows the evolution of execution-time
sample distributions. Baselines DPimg and DPpcd produce scattered or noisy patterns, particularly in
later stages, indicating instability and higher variance. In contrast, GPC yields coherent and concen-
trated distributions, ensuring greater stability and mitigating error accumulation during execution.

Experiment Results on GPC with Superposition. We further evaluate GPC under superposition
settings. As shown in Tab. 4, composing DP and MP with logical AND boosts the SR to 64.92
(+25.73%), while Florence-D + DP under logical OR reaches 77.59 (+16.34%). These results high-
light the potential of superposition to amplify policy performance through stronger composition op-
erators. However, superposition also has clear limitations. It is not directly applicable to flow-based
models, and the requirement to recompute weights at every step increases inference cost.
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7 DISCUSSION

Limitations. Our GPC demonstrates clear effectiveness across a wide range of experiments. De-
spite this strength, certain limitations remain. First, test-time weight search is restricted by a fixed
discretization, which may overlook optimal values; future work could explore adaptive or automatic
search strategies. Second, we mainly study dual-policy composition, while scaling to more policies
increases computation. Addressing this may require feature sharing or compact representations to
enable efficient multi-policy integration.

Conclusion. We introduced General Policy Composition, a training-free framework that improves
robotic control by combining the distributional scores of pre-trained policies. Our theoretical analy-
sis establishes that convex score composition leads to step-wise and trajectory-level improvements,
while our experiments on diverse benchmarks and real-world setups confirm consistent performance
gains. GPC is simple, versatile, and widely applicable, providing a foundation for future research
in policy composition as a means to enhance control performance without additional training re-
sources.
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Claudia Pérez-D’Arpino, Dieter Fox, and Julie Shah. Inference-time policy steering through
human interactions. In International Conference on Robotics and Automation (ICRA), pp. 15626–
15633. IEEE, 2025c.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. Robotics and Automation Letters (RAL), 2025a.

Junjie Wen, Yichen Zhu, Minjie Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Xiaoyu Liu, Chaomin
Shen, Yaxin Peng, and Feifei Feng. Diffusionvla: Scaling robot foundation models via unified
diffusion and autoregression. In International Conference on Machine Learning (ICML), 2025b.

Zehang Weng, Haofei Lu, Danica Kragic, and Jens Lundell. Dexdiffuser: Generating dexterous
grasps with diffusion models. Robotics and Automation Letters (RAL), 2024.
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A ASSUMPTIONS, NOTATION, AND PRELIMINARY FACTS

Dynamics. Sampling is modeled as an ODE/SDE:

9xptq “ F
`

t, xptq, spt, xptqq
˘

, t P r0, T s, xp0q „ µ0, (8)

where xptq P Rd, the score s : r0, T s ˆ Rd Ñ Rd, and F : r0, T s ˆ Rd ˆ Rd Ñ Rd represents the
transformed score due to noise schedule, parameterization, or solver.

Oracle vs. realized flow. We compare the oracle trajectory x˚ptq solving equation 8 with s˚, and
the realized trajectory xŝptq solving equation 8 with ŝ; both share the same initial conditions.

Score error.
∆spt, xq :“ ŝpt, xq ´ s˚pt, xq.

Score error bound assumption. We assume:

There exists a nonnegative function κptq such that for all x,

}∆spt, xq} ď κptq.

Regularity assumptions. We assume:

(A1) Lipschitz of F . (Sohrab, 2003; Thomson et al., 2008) For a.e. t P r0, T s, there exist inte-
grable Lx, Ls ě 0 such that, for all x, y, s, r,

}F pt, x, sq ´ F pt, y, rq} ď Lxptq}x ´ y} ` Lsptq}s ´ r}.

(A2) Score regularity. s˚pt, ¨q and ŝpt, ¨q are locally Lipschitz on the tube visited by the flows,
with (time-dependent) moduli Λ˚ptq, Λ̂ptq P L1pr0, T sq and at most linear growth.

Absolute continuity and norm derivative. If e : r0, T s Ñ Rd is absolutely continuous, then e1ptq

exists a.e., eptq “ ep0q `
şt

0
e1pτq dτ , and ϕptq :“ }eptq} is absolutely continuous with

ϕ1ptq ď }e1ptq} for a.e. t. (9)

We give a complete proof in §E.

Why Lipschitz is reasonable. For probability-flow ODEs of score-based models, F is affine in
s (e.g., reverse ODE (Song et al., 2020b): F “ fpt, xq ´ gptq2spt, xq), so Lsptq “ gptq2 (known,
bounded on finite T ). The dependence on x comes via fpt, xq (often smooth) and through s; with
networks on compact tubes, local Lipschitz holds and yields finite Lipschitz moduli Λ˚ptq, Λ̂ptq.
These are standard in stability analyses of neural ODEs and probability-flow ODEs.
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B PROOF OF PROPOSITION 4.1 (SINGLE-STEP CONVEX IMPROVEMENT)

Statement restated. Conditioning on pt, xtq, suppose we have two estimators

εi “ s˚pt, xtq ` bipt, xtq ` ηi, i “ t1, 2u,

where s˚pt, xtq is the true score, bi are deterministic biases, and ηi are zero-mean random noises.
For w P r0, 1s, define the convex combination

εpwq “ wε1 ` p1 ´ wqε2, Qpwq :“ Eη}εpwq ´ s˚pt, xtq}2. (10)

Notation. This abstraction (equation 10) unifies different modeling paradigms:

• When noise is present, the estimator can be viewed as the output of a diffusion model, and
the residual term η plays the role of the diffusion component in the time-reversed stochastic
dynamics (e.g., a reverse-time ODE).

• When the noise term vanishes (i.e., η “ 0), the formulation reduces to a deterministic
transport setting, which is the flow matching case.

The role of ηi is analogous to the stochastic noise introduced in the diffusion forward process (e.g.,
Gaussian perturbations of the clean sample), ensuring that each estimator εi remains random even
when pt, xtq is fixed. All expectations in Proposition 4.1 are therefore taken with respect to the joint
distribution of pη1, η2q. and the randomness is solely due to pη1, η2q. We write expectations as

Er¨s ” Eηr¨s ” Eη1,η2

“

¨ | xt, t
‰

.

Goal. Show that Qpwq is a convex quadratic, derive its coefficients, the minimizer w‹, the mini-
mum value, and conditions for improvement over the endpoints w “ 0, 1.

Decomposition. Subtracting s˚pt, xtq, we write

εpwq ´ s˚ “ upwq ` vpwq,

where
upwq “ wb1 ` p1 ´ wqb2, vpwq “ wη1 ` p1 ´ wqη2.

Hence

Qpwq “ E}upwq ` vpwq}2

“ }upwq}2 ` 2Exupwq, vpwqy ` E}vpwq}2. (11)

Since Erηis “ 0, the cross term vanishes, leaving

Qpwq “ }upwq}2 ` E}vpwq}2.

Bias contribution. Expanding }upwq}2 gives

}upwq}2 “ }b2 ` wpb1 ´ b2q}2 “ }b2}2 ` 2wxb2, b1 ´ b2y ` w2}b1 ´ b2}2.

Noise contribution. Expanding E}vpwq}2 gives

E}vpwq}2 “ E}wη1 ` p1 ´ wqη2}2

“ w2 E}η1}2 ` p1 ´ wq2 E}η2}2 ` 2wp1 ´ wqExη1, η2y.

Quadratic form. Combining the two contributions, Qpwq is a quadratic function

Qpwq “ Aw2 ` Bw ` C,

where
A “ }b1 ´ b2}2 ` E}η1}2 ` E}η2}2 ´ 2Exη1, η2y,

B “ 2xb2, b1 ´ b2y ´ 2E}η2}2 ` 2Exη1, η2y,

C “ }b2}2 ` E}η2}2.
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Convexity. By Cauchy–Schwarz,
Exη1, η2y ď

a

E}η1}2 E}η2}2,

so
A ě p

a

E}η1}2 ´
a

E}η2}2q2 ` }b1 ´ b2}2 ě 0.
Thus Qpwq is convex, and strictly convex unless both biases and noises coincide.

Minimizer. If A ą 0, the unique minimizer is

w‹ “ ´
B

2A
“

E}η2}2 ´ Exη1, η2y ´ xb2, b1 ´ b2y

}b1 ´ b2}2 ` E}η1}2 ` E}η2}2 ´ 2Exη1, η2y
.

The minimum value is

Qpw‹q “ C ´
B2

4A
.

Endpoint comparison. At w “ 0, 1, we have
Qp0q “ C, Qp1q “ A ` B ` C.

The gaps are

Qp0q ´ Qpw‹q “ B2

4A ě 0, Qp1q ´ Qpw‹q “
p2A`Bq

2

4A ě 0,

with strict inequality unless B “ 0 or 2A ` B “ 0.

Special Case I: Unbiased case. If b1 “ b2 “ 0, then
A “ E}η1}2 ` E}η2}2 ´ 2Exη1, η2y, B “ ´2E}η2}2 ` 2Exη1, η2y, C “ E}η2}2,

with A ě 0 and A ą 0 unless η1, η2 are perfectly correlated with identical second moments. For
A ą 0, the unique minimizer is

w‹ “
E}η2}2 ´ Exη1, η2y

E}η1}2 ` E}η2}2 ´ 2Exη1, η2y
,

and the endpoint gaps are

Qp0q ´ Qpw‹q “
B2

4A
“

`

E}η2}2 ´ Exη1, η2y
˘2

E}η1}2 ` E}η2}2 ´ 2Exη1, η2y
ą 0

whenever Exη1, η2y ‰ E}η2}2, and

Qp1q ´ Qpw‹q “
p2A ` Bq2

4A
“

`

E}η1}2 ´ Exη1, η2y
˘2

E}η1}2 ` E}η2}2 ´ 2Exη1, η2y
ą 0

whenever Exη1, η2y ‰ E}η1}2. Thus Qpw‹q ă mintQp0q, Qp1qu whenever η1, η2 are not perfectly
correlated.

Special Case II: No-noise (deterministic) case with bias Assume η1 “ η2 “ 0 (deterministic
estimators with bias). Then

Qpwq “ }wb1 ` p1 ´ wqb2}2 “ }b2 ` wpb1 ´ b2q}2, w P r0, 1s.

Write Qpwq “ αw2 ` 2βw ` γ with
α “ }b1 ´ b2}2, β “ xb2, b1 ´ b2y, γ “ }b2}2.

If b1 ‰ b2 then α ą 0 and the unconstrained minimizer is w‹
R “ ´β{α, giving

minwPR Qpwq “ γ ´
β2

α
.

Hence the endpoint gaps are

Qp0q´minQ “
β2

α
“

xb2, b1 ´ b2y2

}b1 ´ b2}2
ě 0 , Qp1q´minQ “ α`2β`

β2

α
“

pα ` βq2

α
ě 0 .

Therefore, if w‹
R P p0, 1q (so the constrained minimizer over r0, 1s equals the unconstrained one),

we have
Qpw‹q “ minQ ă mintQp0q, Qp1qu,

with strict inequalities unless β “ 0 (for Qp0q) or α ` β “ 0 (for Qp1q). If w‹
R R p0, 1q, the

constrained minimizer lies at an endpoint and no strict improvement over both endpoints is possible.
If b1 “ b2, then α “ 0 and Qpwq ” }b1}2 for all w.

26



Preprint

C PROOF OF PROPOSITION 4.2 (SCORE-TO-SAMPLE STABILITY)

Overview before proof. The goal of the score-to-sample stability result is to show how errors in
the score estimation translates into deviations of the generated trajectory. Formally, we view sam-
pling as an ODE of the form 9xptq “ F pt, xptq, spt, xptqqq, where the score s directly drives the
dynamics, and F represents the transformed output after scheduler, parameterization, or solver. Re-
placing the oracle score s˚ with an estimator ŝ perturbs this vector field, and the resulting trajectory
deviation can be quantified.

The proof proceeds by analyzing the trajectory difference eptq “ xŝptq ´ x˚ptq. Its derivative
naturally splits into two terms: a Lipschitz growth component proportional to }eptq}, and a forcing
component proportional to the score error }ŝ´ s˚}. This reduces the problem to a standard stability
inequality for ODEs. Applying Grönwall’s inequality (Gronwall, 1919; Bellman, 1943) then yields
a trajectory-level bound expressed in terms of the integrated score error.

Finally, this stability guarantee connects back to Proposition 4.1: since convex composition strictly
improves score estimation at the single-step level, the bound implies that the composed policy in-
herits a strictly tighter trajectory deviation bound. This prepares the ground for Corollary 4.1, which
consolidates the results into a trajectory-level performance guarantee for GPC.

Statement restated. Let x˚ptq and xŝptq solve

9x˚ptq “ F pt, x˚ptq, s˚pt, x˚ptqqq, 9xŝptq “ F pt, xŝptq, ŝpt, xŝptqqq,

with the same xp0q. Under (A1)–(A2), with

L̃ptq :“ Lxptq ` LsptqΛ̂ptq,

we have for all T P r0, T s:

}xŝpT q ´ x˚pT q} ď

ż T

0

exp
´

ż T

t

L̃pτqdτ
¯

Lsptq }∆spt, x˚ptqq} dt. (12)

Taking expectation, applying Cauchy–Schwarz and Jensen and using the assumption of score error
bound, we obtain

E}xŝpT q ´ x˚pT q} ď

˜

ż T

0

e 2
şT
t

L̃pτq dτ Lsptq2 dt

¸1{2˜

ż T

0

κptq2 dt

¸1{2

. (13)

Please see the detailed proof as follows.

A. ABSOLUTE CONTINUITY AND THE ERROR DIFFERENTIAL INEQUALITY

Let eptq :“ xŝptq ´ x˚ptq. we have

e1ptq “ F pt, xŝptq, ŝpt, xŝptqqq ´ F pt, x˚ptq, s˚pt, x˚ptqqq for a.e. t. (14)

Insert and subtract two intermediate terms to separate x and s contributions:

}e1ptq} ď

›

›

›
F

`

t, xŝ, ŝpt, xŝq
˘

´ F
`

t, xŝ, ŝpt, x˚q
˘

›

›

›
(15)

`

›

›

›
F

`

t, xŝ, ŝpt, x˚q
˘

´ F
`

t, xŝ, s
˚pt, x˚q

˘

›

›

›
(16)

`

›

›

›
F

`

t, xŝ, s
˚pt, x˚q

˘

´ F
`

t, x˚, s˚pt, x˚q
˘

›

›

›
. (17)

By (A1), the first (15) and second (16) equations are bounded by Lsptq}ŝpt, xŝq ´ ŝpt, x˚q} and
Lsptq}ŝpt, x˚q ´ s˚pt, x˚q}, respectively; the third equation 17 is bounded by Lxptq}xŝ ´ x˚} “

Lxptq}eptq}. Using the x-Lipschitzness of ŝ from (A2),

}ŝpt, xŝq ´ ŝpt, x˚q} ď Λ̂ptq }eptq}.

Therefore,
}e1ptq} ď

´

Lxptq ` LsptqΛ̂ptq
¯

:“L̃ptq

}eptq} ` Lsptq }∆spt, x˚ptqq}. (18)
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B. FROM }e1ptq} TO ϕ1ptq

Let ϕptq :“ }eptq}. By equation 9, ϕ is absolutely continuous and

ϕ1ptq ď }e1ptq} for a.e. t.

Combining with equation 18 gives the scalar differential inequality

ϕ1ptq ď L̃ptqϕptq ` Lsptq }∆spt, x˚ptqq} for a.e. t, ϕp0q “ 0. (19)

C. GRÖNWALL (INTEGRATING FACTOR) AND THE PATHWISE BOUND

Define Aptq :“
şt

0
L̃pτq dτ and gptq :“ e´Aptqϕptq. Then a.e.

g1ptq “ e´Aptq
`

ϕ1ptq ´ L̃ptqϕptq
˘

ď e´AptqLsptq }∆spt, x˚ptqq}.

Integrate from 0 to T ; since ϕp0q “ 0 (same initial conditions) we have gp0q “ 0:

gpT q ď

ż T

0

e´AptqLsptq }∆spt, x˚ptqq} dt.

Multiply by eApT q:

ϕpT q “ eApT qgpT q ď

ż T

0

eApT q´AptqLsptq }∆spt, x˚ptqq} dt.

Since ApT q ´ Aptq “
şT

t
L̃pτq dτ , the bound

ϕpT q “ }epT q} ď

ż T

0

exp
´

ż T

t

L̃pτqdτ
¯

Lsptq }∆spt, x˚ptqq} dt (20)

follows, which is exactly equation 12.

D. EXPECTATION AND A READABLE UPPER BOUND

We first take expectations of the pathwise bound equation 20:

E}epT q} “ E

«

ż T

0

e
şT
t

L̃pτq dτ Lsptq }∆spt, x˚ptqq} dt

ff

.

Notation. The expectation Er¨s is taken over the randomness of the initial conditions. This already
provides a valid (and tight) expected bound. In the following we present a slightly looser but
cleaner form by applying classical inequalities, which is easier to read and to apply in practice.

By Tonelli’s theorem (non-negative integrand) (Fubini, 1907; Tonelli, 1909):

“

ż T

0

e
şT
t

L̃pτq dτ LsptqE}∆spt, x˚ptqq} dt.

Apply Cauchy–Schwarz (Cauchy, 1821) in L2pr0, T sq:
ż T

0

W ptqE}∆spt, x˚ptqq} dt ď

´

ż T

0

W ptq2 dt
¯1{2´

ż T

0

pE}∆spt, x˚ptqq}q2 dt
¯1{2

,

where
W ptq :“ e

şT
t

L̃pτq dτ Lsptq.

Use Jensen (Jensen, 1906) on pE}∆s}q2 ď E}∆s}2 to obtain

pE}∆spt, x˚ptqq}q2 ď E}∆spt, x˚ptqq}2.
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Readable expected bound. Combining the above yields

E}epT q} ď

˜

ż T

0

e 2
şT
t

L̃pτq dτ Lsptq2 dt

¸1{2˜

ż T

0

E}∆spt, x˚ptqq}2 dt

¸1{2

(13)

Assumption on score error. Using the Assumption of score error bound, which guarantees
}∆spt, xq} ď κptq for all x, then

E}epT q} ď

˜

ż T

0

e 2
şT
t

L̃pτq dτ Lsptq2 dt

¸1{2˜

ż T

0

κptq2 dt

¸1{2

.

This is exactly the equation 13 and the result of Proposition 4.2.

D PROOF OF COROLLARY 4.1 (GPC TIGHTENS THE TERMINAL BOUND)

Statement restated. Let scomp “ ws1 ` p1 ´ wqs2 with w P p0, 1q. If
ż T

0

E}scomp ´ s˚}2 dt ă min
iPt1,2u

ż T

0

E}si ´ s˚}2 dt,

then
E}xscomppT q ´ x˚pT q} ă min

iPt1,2u
E}xsipT q ´ x˚pT q}.

Proof. By Proposition 4.2, for any score estimator ŝ we have

E}xŝpT q ´ x˚pT q} ď exp
´

ż T

0

L̃
¯ ´

ż T

0

Lsptq2 dt
¯1{2 ´

ż T

0

E}ŝ ´ s˚}2dt
¯1{2

,

for all choices of ŝ. Applying this inequality to ŝ “ scomp and to ŝ “ si pi “ 1, 2q, and and noting
that Proposition 4.1 guarantees the existence of a convex weight w˚ P p0, 1q for which the integrated
MSE of scomp is strictly smaller than that of each si,

ż T

0

E}scomp ´ s˚}2 dt ă min
iPt1,2u

ż T

0

E}si ´ s˚}2 dt,

we conclude that the corresponding terminal trajectory error of scomp is also strictly smaller than
that of either base estimator.

E DETAILED TOOLS: NORM DERIVATIVE, INTEGRATING FACTOR, AND
INEQUALITIES

E.1 NORM DERIVATIVE INEQUALITY

Let e : r0, T s Ñ Rd be absolutely continuous. Define ϕptq “ }eptq}. We show ϕ is absolutely
continuous and ϕ1ptq ď }e1ptq} for a.e. t.

Absolute continuity. Since eptq “ ep0q `
şt

0
e1pτq dτ with e1 P L1, and the norm is 1-Lipschitz,

ϕ is absolutely continuous.

Difference-quotient proof. Fix a point where e1 exists. Then

ϕpt ` hq ´ ϕptq

h
“

}ept ` hq} ´ }eptq}

h
ď

}ept ` hq ´ eptq}

h
.

Taking h Ñ 0 gives ϕ1ptq ď }e1ptq}. This holds for a.e. t.
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Chain-rule proof (when eptq ‰ 0). For gpxq “ }x}, ∇gpxq “ x{}x} when x ‰ 0. Then

ϕ1ptq “ x∇gpeptqq, e1ptqy “

A eptq

}eptq}
, e1ptq

E

ď }e1ptq}.

At points with eptq “ 0, use the difference-quotient argument above.

E.2 INTEGRATING FACTOR

Starting from ϕ1ptq ď aptqϕptq ` bptq with ϕp0q “ 0 and a, b P L1, define Aptq “
şt

0
apτq dτ and

gptq “ e´Aptqϕptq. Then

g1ptq “ e´Aptq
`

ϕ1ptq ´ aptqϕptq
˘

ď e´Aptqbptq.

Integrate:

gpT q ď

ż T

0

e´Aptqbptq dt ñ ϕpT q ď

ż T

0

eApT q´Aptqbptq dt.

Since ApT q ´ Aptq ď
şT

0
a, a looser bound is ϕpT q ď e

şT
0

a
şT

0
bptq dt.

E.3 TONELLI, CAUCHY–SCHWARZ, AND JENSEN

Given a nonnegative integrand Hpω, tq on Ω ˆ r0, T s, Tonelli implies

E

«

ż T

0

Hpω, tq dt

ff

“

ż T

0

ErHpω, tqs dt.

For functions f, g P L2pr0, T sq,
şT

0
fg ď }f}2 }g}2. For a random variable Z, Jensen yields

pE}Z}q2 ď E}Z}2.

F HOW PROPOSITIONS AND COROLLARY FIT TOGETHER

Prop. 4.1 guarantees the existence of a convex weight (often interior) that lowers the score MSE
under mild, testable conditions (heterogeneous models reduce cross-correlation and diversify bi-
ases). Prop. 4.2 translates any reduction in (time-integrated) score MSE into a reduction of a non-
asymptotic terminal error bound. Cor. 4.1 merely combines the two: once the functional-level
inequality is strict, the certified sampling bound tightens accordingly.
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G THE FLEXIBILITY OF GPC WITH ANY PREDICTION TYPES

A key strength of General Policy Composition (GPC) is its flexibility and independence from the
specific parameterization used to train the underlying diffusion or flow-matching policies. The fun-
damental principle of GPC is the composition of the underlying score functions of the data dis-
tributions, sθpτt, tq “ ∇τt log ptpτtq. Common parameterizations, such as noise prediction, data
prediction, and v-prediction, are all mathematically inter-convertible and represent this same under-
lying score function. This ensures that GPC can seamlessly compose policies trained with different
prediction objectives without requiring extra training.

Let’s formalize the relationship between these parameterizations. The diffusion forward process
defines a noisy trajectory τt at time t from an initial trajectory τ0 and a Gaussian noise sample
ϵ „ N p0, Iq as:

τt “ αtτ0 ` σtϵ, (21)
where αt and σt are schedule-dependent coefficients.

Score Prediction (s-prediction). This parameterization directly models the score function. The
score is related to the noise ϵ by the following identity (Song et al., 2020b):

spτt, tq “ ∇τt log ptpτtq “ ´
ϵ

σt
. (22)

Composing scores is the core of GPC. Any other parameterization can be converted to a score before
composition.

Noise Prediction (ϵ-prediction). This is the most common parameterization, used in the original
DDPM (Ho et al., 2020). The model ϵθpτt, tq is trained to predict the noise ϵ. A model trained on
noise prediction can be converted to a score prediction model:

sθpτt, tq “ ´
ϵθpτt, tq

σt
. (23)

Since the relationship is linear, composing predicted noises with weights wi is equivalent to com-
posing the scores with the same weights.

Data Prediction (τ0-prediction). This parameterization trains the model pτ0qθpτt, tq to predict
the original clean data τ0 from the noisy input τt. The predicted noise ϵ can be recovered from the
predicted data using the forward process definition:

ϵθpτt, tq “
τt ´ αtpτ0qθpτt, tq

σt
. (24)

This allows a data-prediction policy to be converted to the score or noise representation for compo-
sition.

Velocity Prediction (v-prediction). Introduced by (Salimans & Ho, 2022), v-prediction offers
improved numerical stability. The target, v, is defined as v “ αtϵ ´ σtτ0. A model vθpτt, tq is
trained to predict this target. We can recover the noise ϵ from a v-prediction model’s output using:

ϵθpτt, tq “ αtvθpτt, tq ` σtτt. (25)

From there, the equivalent score can be calculated.

Implications for GPC. The interchangeability of these parameterizations is what makes GPC
“solver-agnostic.” Suppose we want to compose two policies, π1 and π2. If π1 was trained us-
ing noise prediction (outputting ϵ1θ) and π2 was trained using v-prediction (outputting v2

θ), we can
perform composition by first converting their outputs to a common representation.

For example, we can convert both to the score representation:

s1θpτt, tq “ ´
ϵ1θpτt, tq

σt
(26)

s2θpτt, tq “ ´
αtv

2
θpτt, tq ` σtτt

σt
(27)
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Then, we can perform the convex composition in the score space:

scomp “ w1s
1
θ ` w2s

2
θ. (28)

This composed score scomp can then be used in any standard ODE/SDE solver step to generate the
next state τt´1.

Alternatively, and often more direct in practice, one can convert all outputs to the noise (ϵ) represen-
tation before composition, which yields an equivalent result due to the linear relationship between
score and noise. This flexibility allows GPC to serve as a universal, plug-and-play module for
combining a wide variety of pre-trained diffusion-based or flow-based policies, regardless of their
specific training objective or parameterization.
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H EXPERIMENT DETAILS

H.1 ROBOMIMIC

The Robomimic benchmark (Mandlekar et al., 2022) includes three manipulation tasks: Can, Lift,
and Square. We train all baselines with batch size 1024 for 1000 epochs. Training uses DDIM
sampling with the scaled linear beta scheduler and prediction with epsilon. Diffusion steps are
set to 100 during training and 10 at inference. Each model is trained with observation horizon
= 2 and chunk size = 16. Evaluation is performed across 20 parallel environments, each running
10 episodes, giving a total of 200 rollouts. The original code of Robomimic is from https:
//github.com/ARISE-Initiative/robomimic. We reproduce the baselines based on
the codes from https://github.com/EDiRobotics/mimictest.

H.2 PUSHT

The PushT benchmark (Florence et al., 2021) involves planar pushing in a 2D workspace. Here,
training uses batch size 256 and runs for 500 epochs, with all other parameters kept identical to
Robomimic. Evaluation follows the same protocol of 200 rollouts. The original code of Robomimic
is from https://github.com/real-stanford/diffusion_policy and https://
github.com/google-research/ibc. We reproduce the baselines based on the codes from
https://github.com/EDiRobotics/mimictest.

H.3 ROBOTWIN

RoboTwin (Mu et al., 2025) is a dual-arm manipulation benchmark that combines real-world
teleoperated demonstrations with high-fidelity synthetic data, offering a standardized platform
for studying large-scale manipulation learning. The extended RoboTwin 2.0 (Chen et al.,
2025) release covers more than 50 tasks, supporting diverse and complex scenarios. Baselines
are reproduced based on the codes from https://github.com/RoboTwin-Platform/
RoboTwin/tree/RoboTwin-1.0 and https://github.com/RoboTwin-Platform/
RoboTwin/tree/main. The success rate of each task is determined with 100 rollouts.

For our experiments, we evaluate on a curated subset of tasks:

• RoboTwin 1.0: Empty Cup Place, Dual Bottles Pick (Hard), Dual Bottles Pick (Easy), Shoe
Place, Dual Shoes Place, Pick Apple Messy, Block Hammer Beat.

• RoboTwin 2.0: Hanging Mug, Open Laptop, Place Burger Fries, Put Object Cabinet, Stack
Bowls, Three Turn Switch.

The DPimg and DPpcd correspond to the diffusion policy based on RGB images (i.e., DP (Chi et al.,
2023)) and point cloud (i.e., DP3 (Ze et al., 2024b)), respectively. In RoboTwin 1.0, we reproduce
the DPimg and DPpcd (without using point cloud color) with random seed 0. Since the diffusion
scores from different policies are composed at each denoising step (Alg. 1), we unify the training
settings of both DPpcd and DPimg. In particular, they are trained with DDPM with 100 training
and inference steps. In RoboTwin 2.0 experiments, we train DPs with the same settings as RDT
to ensure compatibility so that our GPC can be applied consistently. For example, RDT employs
sample prediction, we align our diffusion models accordingly by training both DPimg and DPpcd
under the same prediction setting.

H.4 REAL-WORLD EXPERIMENTS

We choose DPimg and DPpcd as our base policies for real-world experiments. For DPimg, we use an
Intel RealSense D435 RGB camera at 640 ˆ 480 resolution (primary view and wrist view) to get
the RGB images. For DPpcd, we use an Intel RealSense L515 depth camera at 640 ˆ 480, where we
obtain point clouds by using depth images together with camera intrinsics. The robot platform is
Piper, operated in a master–slave teleoperation setup. The illustration of the real-world experimental
setup is shown in Fig. 7. Our GPC achieves superior performance compared with the base policies,
presenting better trajectories in Fig. 8. Training follows official configurations: DPpcd is trained for
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600 epochs with batch size 256 (official code), while DPimg is trained for 20k steps with batch size
64 (Lerobot (Cadene et al., 2024) diffusion implementation).

Figure 7: Illustration of Experimental Setup.

GPC DPimg DPpcd


Figure 8: Tracking Results of Real-world Experiment in Place Bottles.

H.5 NOTATION FOR GPC FLEXIBILITY

Notably, the prediction types in diffusion models are not strictly restricted to a single formulation
(e.g., ϵ-prediction, x0-prediction, or v-prediction), but can be freely combined within our framework.
When heterogeneous prediction types are adopted simultaneously, the denoising process requires
proper alignment to ensure consistency. We provide detailed guidance in Sec. G on how to reconcile
different prediction types in GPC from a theoretical perspective, further demonstrating the flexibility
of our proposed method.
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I ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide the complete set of experimental results to complement the main text.
These results include all weight configurations for convex score composition, as well as the out-
comes under logical AND and OR operators.

Robomimic and PushT. We report detailed results on the Robomimic (Can, Lift, Square) and
PushT tasks. In addition to the average performance reported in the main paper, we include (i) the
full tables for convex score combination, logical AND, and logical OR composition in Tab. 6, and
(ii) the breakdown of performance under different convex weights w for each task: Can (Tab. 7 &
Fig. 9), Square (Tab. 9 & Fig. 10), Lift (Tab. 8 & Fig. 11) and PushT (Tab. 10 & Fig. 12). These
results illustrate how GPC adapts across weighting configurations and provide insight into the trade-
offs between modalities and model backbones.

RoboTwin. We also provide the complete results on RoboTwin 2.0 across all tasks. In particular,
we include full tables comparing base policies and their compositions (e.g., DPimg + DPpcd, RDT +
DPpcd), with all tested weight settings: Open Labtop (Tab. 11), Place Burger (Tab. 12 & Fig. 21), Put
Object Cabinet (Tab. 13 & Fig. 24), Hanging Mug (Tab. 14 & Fig. 23), Stack Bowls Three (Tab. 15
& Fig. 14) and Turn Switch (Tab. 16 & Fig. 20). These detailed numbers confirm the robustness of
GPC across diverse manipulation tasks and further validate the findings in Sec. 6.

Real-world Experiments. We further report complete results for the four real-world tasks: Place
Bottles (Tab. 17 & Fig. 27), Hang Mug (Tab. 18 & Fig. 26), Clean Table (Tab. 19 & Fig. 25), and
Punch Holes (Tab. 20 & Fig. 28). Similar to the simulation benchmarks, we provide full compar-
isons between base policies and their GPC compositions under all tested weight settings. These
results consistently show that GPC achieves higher success rates than individual policies, thereby
confirming its effectiveness in practical robotic scenarios.

Summary. Together, these extended results give a comprehensive view of GPC’s empirical be-
havior across different operators and weightings. They serve as a reference for understanding not
only the average improvements but also the sensitivity of performance to the choice of weights and
composition strategies.
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Table 6: Experiments on Robomimic and PushT with GPC under convex score combination,
Logical AND and Logical OR.

Method Generative Mode Model Type Robomimic PushT
Can Lift Square PushT Average

Base Policies
Diffusion Policy (DP) Diffusion VA 34.50 98.50 2.00 21.75 39.19
Mamba Policy (MP) Flow Matching VA 5.00 98.50 3.00 12.06 29.64
Flow Policy (FP) Diffusion VA 95.00 13.00 77.50 54.25 59.94
Florence Policy-D Diffusion VLA 61.50 97.00 46.50 40.00 61.25
Florence Policy-F Flow Matching VLA 89.00 98.50 88.50 39.38 78.84
π0 Flow Matching VLA 96.50 99.00 92.50 57.69 86.42

Composed Policies via Convex Score Combination
DP+MP Diffusion VA & VA 34.50 99.50 8.00 23.63 41.41 +2.22
Florence-Policy-D+DP Diffusion VLA & VA 62.50 100.00 61.50 43.06 66.76 +5.51
Florence-Policy-D+MP Diffusion VLA & VA 63.00 100.00 54.50 40.88 64.60 +3.35
Florence-Policy-F+FP Flow Matching VLA & VA 98.50 98.50 92.50 56.06 86.39 +7.55
π0+FP Flow Matching VLA & VA 99.50 100.00 94.00 62.25 88.94 +2.52

Composed Policies via Logical AND Composition
DP+MP Diffusion VA & VA 84.00 99.50 48.00 28.18 64.92 +25.73
Florence-Policy-D+DP Diffusion VLA & VA 90.50 100.00 90.00 36.31 79.20 +17.95
Florence-Policy-D+MP Diffusion VLA & VA 83.00 100.00 90.00 37.38 77.60 +16.35

Composed Policies via Logical OR Composition
DP+MP Diffusion VA & VA 82.50 99.50 44.00 29.13 63.78 +24.59
Florence-Policy-D+DP Diffusion VLA & VA 83.50 100.00 89.00 37.87 77.59 +16.34
Florence-Policy-D+MP Diffusion VLA & VA 86.50 100.00 86.50 38.44 77.86 +16.61

Table 7: Experiments on Robomimic Can with GPC under different weighting.

Method Generative Mode Model Type Can
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+Mamba Policy Diffusion VA & VA 5.00 10.00 10.50 10.50 16.50 20.00 20.00 23.00 25.00 29.00 34.50
Florence DiT + DP Diffusion VLA & VA 34.50 34.50 42.50 48.00 56.00 62.50 60.50 63.50 58.00 62.50 61.50
Florence DiT + MambaP Diffusion VLA & VA 5.00 11.50 21.50 30.50 39.00 44.50 47.50 46.50 56.50 63.00 61.50
Florence Flow+FlowP Flow Matching VLA & VA 95.00 98.50 98.50 96.00 96.50 97.00 93.00 92.00 90.00 90.50 89.00
π0+FlowP Flow Matching VLA & VA 95.00 96.00 99.00 98.00 97.50 98.50 99.50 98.00 96.00 96.00 96.50

Table 8: Experiments on Robomimic Lift with GPC under different weighting.

Method Generative Mode Model Type Lift
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+Mamba Policy Diffusion VA & VA 98.50 99.00 99.50 96.50 99.00 98.50 98.50 98.50 98.50 98.50 98.50
Florence DiT + DP Diffusion VLA & VA 98.50 99.50 99.00 100.00 99.50 99.50 99.50 99.50 99.50 98.00 97.00
Florence DiT + MambaP Diffusion VLA & VA 98.50 100.00 99.50 99.00 99.50 99.00 99.00 97.50 98.50 97.00 97.00
Florence Flow+FlowP Flow Matching VLA & VA 13.00 10.50 12.50 23.50 55.00 81.50 93.00 98.00 100.00 98.50 98.50
π0+FlowP Flow Matching VLA & VA 13.00 12.50 17.00 32.50 67.50 92.50 98.50 100.00 100.00 99.50 99.00

Table 9: Experiments on Robomimic Square with GPC under different weighting.

Method Generative Mode Model Type Square
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+Mamba Policy Diffusion VA & VA 3.00 3.00 4.00 1.50 8.00 4.50 6.00 6.00 3.50 7.50 2.00
Florence DiT + DP Diffusion VLA & VA 2.00 12.50 20.00 34.00 44.00 49.00 61.50 57.00 59.50 54.50 46.50
Florence DiT + MambaP Diffusion VLA & VA 3.00 8.00 8.50 17.00 22.00 34.00 45.00 45.50 50.00 54.50 46.50
Florence Flow+FlowP Flow Matching VLA & VA 77.50 79.00 85.00 92.00 92.00 92.00 91.00 88.00 88.50 92.50 88.50
π0+FlowP Flow Matching VLA & VA 77.50 80.50 84.50 94.00 93.50 94.00 93.50 93.00 90.50 93.50 92.50
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Table 10: Experiments on PushT with GPC under different weighting.

Method Generative Mode Model Type PushT
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+Mamba Policy Diffusion VA & VA 12.06 19.81 18.31 18.87 19.94 19.88 18.13 21.50 23.63 22.38 21.75
Florence DiT + DP Diffusion VLA & VA 21.75 26.75 29.38 32.75 36.06 39.69 41.13 43.06 40.50 40.56 40.00
Florence DiT + MambaP Diffusion VLA & VA 12.06 22.88 25.81 30.62 33.94 37.00 38.44 40.50 40.75 40.88 40.00
Florence Flow+FlowP Flow Matching VLA & VA 54.25 56.06 54.50 50.81 47.38 48.31 47.69 50.50 46.19 40.75 39.38
π0+FlowP Flow Matching VLA & VA 54.25 54.31 56.81 56.37 53.31 57.69 59.12 61.50 62.25 61.50 57.69

Table 11: Experiments on RoboTwin Open Laptop with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Open Laptop
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.93 0.93 0.92 0.93 0.93 0.87 0.84 0.79 0.77 0.74 0.74
RDT + DP Diffusion VLA & VA 0.74 0.74 0.77 0.78 0.79 0.80 0.75 0.76 0.73 0.68 0.69
RDT + DP3 Diffusion VLA & VA 0.93 0.92 0.92 0.91 0.92 0.94 0.91 0.86 0.77 0.67 0.69

Table 12: Experiments on RoboTwin Place Burger Fries with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Place Burger Fries
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.72 0.73 0.78 0.74 0.72 0.65 0.68 0.64 0.66 0.54 0.49
RDT + DP Diffusion VLA & VA 0.49 0.54 0.56 0.57 0.53 0.49 0.50 0.48 0.45 0.45 0.46
RDT + DP3 Diffusion VLA & VA 0.72 0.79 0.83 0.83 0.77 0.78 0.72 0.67 0.67 0.55 0.46

Table 13: Experiments on RoboTwin Put Object Cabinet with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Put Object Cabinet
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.71 0.80 0.82 0.73 0.66 0.73 0.63 0.67 0.67 0.55 0.56
RDT + DP Diffusion VLA & VA 0.56 0.54 0.59 0.54 0.51 0.52 0.40 0.35 0.27 0.32 0.32
RDT + DP3 Diffusion VLA & VA 0.71 0.71 0.78 0.71 0.69 0.61 0.58 0.46 0.37 0.40 0.32

Table 14: Experiments on RoboTwin Hanging Mug with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Hanging Mug
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.21 0.23 0.20 0.22 0.18 0.17 0.16 0.11 0.15 0.11 0.10
RDT + DP Diffusion VLA & VA 0.10 0.13 0.09 0.15 0.11 0.18 0.18 0.15 0.14 0.12 0.13
RDT + DP3 Diffusion VLA & VA 0.21 0.26 0.31 0.30 0.36 0.25 0.25 0.22 0.24 0.15 0.13

Table 15: Experiments on RoboTwin Stack Bowls Three with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Stack Bowls Three
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.64 0.70 0.66 0.71 0.60 0.53 0.63 0.56 0.59 0.49 0.52
RDT + DP Diffusion VLA & VA 0.52 0.65 0.66 0.57 0.66 0.59 0.58 0.50 0.40 0.32 0.47
RDT + DP3 Diffusion VLA & VA 0.64 0.71 0.73 0.55 0.71 0.70 0.60 0.59 0.48 0.42 0.47

Table 16: Experiments on RoboTwin Turn Switch with GPC under different weighting.

Method Generative Mode Model Type RoboTwin: Turn Switch
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP+DP3 Diffusion VA & VA 0.71 0.68 0.60 0.63 0.67 0.56 0.50 0.45 0.41 0.42 0.38
RDT + DP Diffusion VLA & VA 0.38 0.28 0.31 0.28 0.36 0.37 0.34 0.30 0.38 0.35 0.30
RDT + DP3 Diffusion VLA & VA 0.71 0.52 0.54 0.48 0.51 0.59 0.51 0.43 0.42 0.45 0.30
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Table 17: Experiments on Real-world Place Bottle with GPC under different weighting.

Method Generative Mode Model Type Real-world: Place Bottle
0.0 0.2 0.4 0.6 0.8 1.0

DP+DP3 Diffusion VA & VA 11/20 13/20 11/20 12/20 10/20 7/20

Table 18: Experiments on Real-world Hang Mug with GPC under different weighting.

Method Generative Mode Model Type Real-world: Hang Mug
0.0 0.2 0.4 0.6 0.8 1.0

DP+DP3 Diffusion VA & VA 6/20 7/20 5/20 7/20 6/20 5/20

Table 19: Experiments on Real-world Clean Table with GPC under different weighting.

Method Generative Mode Model Type Real-world: Clean Table
0.0 0.2 0.4 0.6 0.8 1.0

DP+DP3 Diffusion VA & VA 7/20 7/20 14/20 10/20 12/20 12/20

Table 20: Experiments on Real-world Punch Holes with GPC under different weighting.

Method Generative Mode Model Type Real-world: Punch Holes
0.0 0.2 0.4 0.6 0.8 1.0

DP+DP3 Diffusion VA & VA 6/20 6/20 5/20 7/20 9/20 7/20
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J VISUALIZATION ON ROBOT TASKS

Figure 9: Illustration of Robomimic Can.

39



Preprint

Figure 10: Illustration of Robomimic Square.

Figure 11: Illustration of Robomimic Lift.
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Figure 12: Illustration of PushT.

Figure 13: Illustration of RoboTwin 1.0 Blocks Stack (Hard).
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Figure 14: Illustration of RoboTwin 1.0 Bowl Stack.

Figure 15: Illustration of RoboTwin 1.0 Dual Bottle Pick Hard.

Figure 16: Illustration of RoboTwin 1.0 Dual Shoes Place.
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Figure 17: Illustration of RoboTwin 1.0 Empty Cup Place.

Figure 18: Illustration of RoboTwin 1.0 Pick Apple Messy.

Figure 19: Illustration of RoboTwin 1.0 Put Bottles Dustbin.
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Figure 20: Illustration of RoboTwin 2.0 Turn Switch.

Figure 21: Illustration of RoboTwin 2.0 Place Burger Fries.
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Figure 22: Illustration of RoboTwin 2.0 Open Laptop.

Figure 23: Illustration of RoboTwin 2.0 Hanging Mug.
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Figure 24: Illustration of RoboTwin 2.0 Put Object Cabinet.

Figure 25: Illustration of Real-world Experiment Clean Table.
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Figure 26: Illustration of Real-world Experiment Hang Mug.

Figure 27: Illustration of Real-world Experiment Place Bottles.
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Figure 28: Illustration of Real-world Experiment Punch Holes.
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K DETAILED LITERATURE REVIEW

Owing to space constraints in the main text, we expand the related work section with a detailed
literature review. This appendix aims to provide a more comprehensive overview of prior work,
highlighting additional studies and applications that could not be discussed in detail in the main
body of the paper. All these works have made significant contributions to the robotics community.

K.1 COMPOSITIONAL GENERATIVE MODELING

Compositional generative modeling has recently emerged as a compelling alternative to monolithic
large-scale models, emphasizing the idea that complex data distributions can be captured more ef-
fectively by composing simpler factors. Instead of relying on a single, over-parameterized model,
researchers argue that distributions can be factorized and modeled in a modular fashion, thereby re-
ducing data requirements and improving interpretability (Koller & Friedman, 2009; Murphy, 2022).
This line of work draws inspiration from probabilistic graphical models and energy-based formula-
tions, but has been extended to modern deep generative architectures.

A key motivation for compositional modeling is data efficiency. By factorizing distributions into
manageable components, one can achieve accurate modeling even under limited training data. For
instance, Janner et al. (2022) and Ajay et al. (2022) showed that trajectory generation benefits from
decomposing the sequence into components, leading to faster training and improved generalization.
In natural language processing, Du et al. (2023b) demonstrated that reasoning can be improved
by combining multiple large language models, effectively composing factors across models in a
“multi-agent” framework. Similarly, Liu et al. (Liu et al., 2021) introduced composable diffusion for
text-to-image generation, where local sentence-level factors combine to synthesize complex global
scenes.

Beyond efficiency, compositionality provides a natural mechanism for generalization to novel tasks
and distributions. In decision-making and planning, Ajay et al. (2023) proposed hierarchical foun-
dation models that integrate language, video, and action policies, enabling flexible recombination for
zero-shot planning (Wang et al., 2025c). In robotic manipulation, Yang et al. (2023b) and Mishra
et al. (2023) showed that object rearrangement tasks can be solved by composing local constraint
factors, while Wang et al. (2024c) extended this idea to heterogeneous policy composition (Wang
et al., 2024b; Wang, 2025). For visual domains, Du et al. (2023a) and Zhang et al. (2023) devel-
oped methods to assemble image collages via factorized regional conditionals, while Yang et al.
(2023a) demonstrated that video style transfer can be achieved by composing a pretrained prior with
a lightweight style model.

Another strand of work investigates how compositional structure can be discovered automatically.
Du et al. (2021) and Su et al. (2024) showed that autoencoders trained with product-of-experts
likelihoods naturally uncover object-level factors, which can later be recombined to generate hybrid
scenes. In dynamical systems, Comas et al. (2023) inferred relational potentials between particles,
enabling recombination of discovered interaction rules. Similarly, Liu et al. (2023) found that com-
positional components learned on ImageNet correspond to semantic classes, making it possible to
synthesize images of unseen multi-class combinations.

At the methodological level, energy-based models (EBMs) provide a natural framework for compo-
sition, since energies are additive by construction (Hinton, 2002; Du & Mordatch, 2019; Grathwohl
et al., 2021). This perspective has been adapted to diffusion models, where each time step de-
fines an implicit EBM and compositions are realized by combining energies across models (Song &
Ermon, 2019; Ho et al., 2020; Du et al., 2023a). Extensions to discrete domains employ Metropolis–
Hastings with learned proposals (Li et al., 2022; Verkuil et al., 2022), while Garipov et al. (2023)
demonstrated how constraint energies can “sculpt” generative trajectories at inference time.

Despite these advances, challenges remain. Current approaches often assume a fixed structure of
composition, limiting adaptability. Efforts by Wiedemer et al. (2023), Lachapelle et al. (2023),
Misino et al. (2022), and Sehgal et al. (2023) highlight the need for robust theoretical frameworks
that explain compositional generalization and offer methods to automatically infer appropriate fac-
torization structures. Addressing these open problems will be crucial for compositional models to
scale and integrate seamlessly into real-world generative systems.
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K.2 DIFFUSION MODELS IN ROBOT LEARNING

Diffusion models have become a central paradigm for robot learning, offering a probabilistic frame-
work for efficient trajectory generation and planning. Building on the recent surveys (Barreiros
et al., 2025; Shao et al., 2025; Zhong et al., 2025; Xiang et al., 2025; Firoozi et al., 2025; Song
et al., 2025; Sapkota et al., 2025; Wong et al., 2025; Wolf et al., 2025; An et al., 2025; Zhang
et al., 2025a; Adilkhanov et al., 2025; Lin et al., 2024b; Ma et al., 2024b; Zheng et al., 2025; Liu
et al., 2025b; Urain et al., 2024), we group diffusion-based robot policies into two categories (Song
et al., 2025): (i) small-size diffusion-based policies, which integrate CNN or Transformer back-
bones with diffusion heads and are trained on task-specific datasets for efficient visuomotor control,
and (ii) large-scale diffusion policies, which couple diffusion modules with pre-trained foundation
models or large robot datasets to achieve broader semantic grounding and cross-embodiment gener-
alization. Together, these developments demonstrate how diffusion can serve both as a lightweight
control primitive in specialized tasks and as a scalable component in foundation-style robot policies,
bridging the gap between low-level stochastic control and high-level semantic reasoning.

Small-size CNN/Transformer-based diffusion policies. A growing body of visuomotor research
couples compact CNN or Transformer encoders with diffusion heads, showing that stochastic de-
noising can serve as an effective control primitive across diverse manipulation settings. Within this
line, several works directly map observations to actions using diffusion: Diffusion Policy (Chi et al.,
2023) established the basic recipe for action diffusion with both CNN and Transformer backbones,
and DP3 (Ze et al., 2024b) extends the paradigm to point-cloud inputs to strengthen 3D spatial
generalization. iDP3 (Ze et al., 2024a) extends DP3 for humanoid robots to learn from noisy hu-
man data. Mamba Policy (Cao et al., 2025b) improves DP3 by introducing a linear-complexity
architecture Mamba (Gu & Dao, 2024; Dao & Gu, 2024). H3DP (Lu et al., 2025) explicitly in-
corporates hierarchical structures to strengthen the integration between visual features and action
generation. MCDP (Cao et al., 2025a) integrates DP and DP3 via compositional diffusion to
achieve enhanced performances. Temporal architectures tailored for planning appear in Motion
Planning Diffusion (Carvalho et al., 2023), while design ablations highlight effective Diffusion-
Transformer components (DiT-Block Policy (Dasari et al., 2025)) and introduce attention-based
conditioning for guided control (MTDP (Wang et al., 2025a)). Dexterous grasp synthesis is treated
by DexDiffuser (Weng et al., 2024), which progressively denoises grasp configurations for multi-
fingered hands. Moving beyond pooled embeddings, 3D Diffuser Actor (Ke et al., 2025) conditions
on tokenized 3D scene representations, and R&D (Vosylius et al., 2024) presents a unified im-
age–action formulation using ViT encoders. For long-horizon or structured problems, ALOHA Un-
leashed (Zhao et al., 2025) trains a Transformer with a diffusion loss for bi-manual skills; Chained-
Diffuser (Xian & Gkanatsios, 2023) first predicts end-effector keyposes and then connects them with
feasible trajectories; and HDP (Ma et al., 2024a) injects kinematics-aware priors to improve phys-
ical realism. Category-level robustness is pursued by S2-Diffusion (Yang et al., 2025) via visual
foundation priors for spatial semantics and by C3DM (Saxena et al., 2023) through constrained-
context conditioning with a fixation step to resist distractors. Diffusion has also been adopted as
a behavior prior for planning: Diffuser (Janner et al., 2022) frames sampling-based planning as
probabilistic behavior synthesis, while DTP (Fan et al., 2025) adds 2D trajectory guidance in a
two-stage pipeline. Language- and object-centric formulations include StructDiffusion (Liu et al.,
2022), which fuses object-centric Transformers with diffusion under language goals, and PlayFu-
sion (Chen et al., 2023), which uses discrete bottlenecks to acquire language-annotated skills. From
the data side, ROSIE (Yu et al., 2023) exploits state-of-the-art text-to-image diffusion for aggressive
augmentation, and Ha et al. (2023) broadens language conditioning across tasks. Finally, capac-
ity can be increased without full monolithic scaling through expert routing: GSC (Mishra et al.,
2023) probabilistically chains learned skills with classifier-based guidance to satisfy constraints,
and DBC (Chen et al., 2024) stabilizes learning by casting behavioral cloning of expert state–action
pairs as diffusion-based modeling.

Beyond the core diffusion-based frameworks, a number of extensions have been proposed to im-
prove efficiency, generalization, and adaptability in visuomotor policy learning. Streaming Diffusion
Policy (Høeg et al., 2024) accelerates policy synthesis by producing partially denoised trajectories
where each action may retain a different noise level, while Bidirectional Decoding (BID) (Liu et al.,
2024b) enables test-time inference through a combination of action chunking and closed-loop adap-
tation. Crossway Diffusion (Li et al., 2024b) introduces a specialized state decoder together with
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an auxiliary self-supervised learning objective to reinforce policy robustness, and Equivariant Dif-
fusion Policy (Wang et al., 2024a) exploits domain symmetries to achieve higher sample efficiency
and better generalization in the denoising process. Complementary empirical work by Lin et al.
(2024a) investigates data scaling effects in imitation learning at scale. Other approaches extend the
representational capacity of policies, such as Imagination Policy (Huang et al., 2025a), which gen-
erates point cloud predictions of target states before converting them into executable actions, and
Consistency Policy (Prasad et al., 2024), which distills faster visuomotor policies through a consis-
tency regularization process. For fine-tuning, DPPO (Ren et al., 2024) provides a unified framework
that integrates policy gradient techniques with diffusion policies in continuous control domains. Ex-
tensions to tactile-rich scenarios include the Reactive Diffusion Policy (Xue et al., 2025), which
combines slow-fast visual–tactile imitation learning for contact-rich manipulation.

Several recent efforts also integrate reasoning and sequence modeling into the diffusion paradigm.
The Unified Video Action Model (Li et al., 2025) jointly optimizes video prediction and action in-
ference for accurate and efficient trajectory generation, while Chain-of-Action (CoA) (Zhang et al.,
2025b) explicitly reasons backward from task goals, producing coherent trajectories through an
action-level chain-of-thought mechanism. Beyond diffusion, flow matching has emerged as a strong
alternative: ManiFlow (Yan et al., 2025) combines flow matching with consistency training to syn-
thesize dexterous actions in just one or two steps; Flow Matching Policy Gradients (McAllister et al.,
2025) embed flow matching directly into policy gradient algorithms for reinforcement learning; and
VITA evolves latent visual states into latent actions under a flow matching framework; Steering
Your Diffusion Policy (Wagenmaker et al., 2025) adapts behavior-cloning policies by performing
reinforcement learning over the latent noise space, offering a flexible way to guide policy behavior
without retraining from scratch. In addition to these extensions, recent works also explore safety
and dynamics-aware guidance. DynaGuide (Du & Song, 2025) introduces a steering mechanism
for diffusion policies by incorporating feedback from an external dynamics model directly into the
denoising process, enabling more physically consistent action generation. Latent Policy Barrier
(LPB) (Sun & Song, 2025), inspired by control barrier functions, formulates expert latent embed-
dings as implicit safety boundaries that distinguish in-distribution states from out-of-distribution
ones, thereby enhancing robustness in visuomotor policy learning.

Together, these results indicate that lightweight diffusion policies augmented by stronger scene en-
coders, subgoal scaffolding, data augmentation, or MoE-style (Jiang et al., 2024) routing are com-
petitive and data-efficient when embodiment and task distributions are relatively constrained.

Large-size LLM–based diffusion policies. At larger scales, diffusion modules are integrated
with pre-trained vision–language-model (VLM) or LLM backbones or trained atop broad cross-
embodiment corpora, marrying semantic understanding with probabilistic action generation. Meth-
ods leveraging general data pre-training use foundation models to inject world knowledge and
linguistic structure: MDT (Reuss et al., 2024) builds on CLIP (Radford et al., 2021) and
Voltron (Karamcheti et al., 2023) for long-horizon manipulation with sparse language, enriching
instructions via GPT-4 (Achiam et al., 2023); Ha et al. (2023) employs LLMs for high-level plan
synthesis and success inference while delegating low-level control to diffusion policies; ROSIE (Yu
et al., 2023) uses LLM-authored prompts to drive text-to-image diffusion for targeted data augmen-
tation; and TinyVLA (Wen et al., 2025a) freezes a multimodal backbone and applies parameter-
efficient tuning („5% trainable) to produce actions efficiently. Compositional planning stacks fur-
ther tighten the loop between language and diffusion: HiP (Ajay et al., 2023) composes expert mod-
els LLMs for task planning, video diffusion for trajectory proposals, and an inverse model for action
mapping, while Plan Diffuser (Sharan et al., 2024) autoregressively emits textual subgoals with an
LLM and translates them into visual subgoals via diffusion for downstream control. In parallel,
robot data pre-training focuses on large, heterogeneous robot datasets to strengthen embodiment
transfer. Octo (Team et al., 2024) aggregates 25 datasets from Open X-Embodiment (O’Neill et al.,
2024) and trains a Transformer with a diffusion head to map observation/task tokens to action tokens
across embodiments; Diffusion-VLA (Wen et al., 2025b) pre-trains on Open X-Embodiment and
DROID (Khazatsky et al., 2024) and adapts to tasks via LoRA (Hu et al., 2022); ChatVLA (Zhou
et al., 2025) co-trains on robot and reasoning data with staged alignment and MoE routing to re-
duce task interference; RDT-1B (Liu et al., 2024a) specializes in fine-grained (including biman-
ual) skills by standardizing a unified action space over heterogeneous robots; and LAPA (Ye et al.,
2024) systematically studies cross-embodiment pre-training using BridgeV2 (Walke et al., 2023)
and Open X-Embodiment (O’Neill et al., 2024). π0 (Black et al., 2024) couples a pre-trained
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vision–language backbone with a flow-matching action expert for precise, smooth manipulation;
Based on π0, π0.5 (Intelligence et al., 2025) uses co-training on heterogeneous tasks to enable broad
generalization; Pertsch et al. (2025) and Driess et al. (2025) focused on accelerating the VLAs
based on empirical studies; Enerverse (Huang et al., 2025b) and Video Prediction Policy (Hu et al.,
2024) use diffusion models for learning visual representations to improve scene understanding and
subsequently enhance policy performance; HybridVLA (Liu et al., 2025a) unifies both the continu-
ous nature of diffusion-based actions and the contextual reasoning of autoregression within a single
LLM; GR00T N1 (Bjorck et al., 2025) is a dual-system (Figure, 2024; Cui et al., 2025) VLA for
generalist humanoid robots, achieving state-of-the-art performances across multiple robot embodi-
ments; Galaxea G0 (Jiang et al., 2025) also adpots the dual-sytem, coupling a VLM for multimodal
planning and a VLA for low-level robot control; Agibot GO-1 (Bu et al., 2025) is a generalist
policy that leverages latent action representations to maximize data utilization; Gemini Robotics
family (Team et al., 2025) achieves generalized abilities in diverse tasks, including robot control,
object detection, pointing, trajectory, and grasp prediction. In addition to using the diffusion policy
as the action head, there are many excellent works that employ flow matching (Lipman et al., 2023;
Liu, 2022) for action prediction: GraspVLA integrates autoregressive perception tasks and flow
matching-based action generation into a unified Chain-of-Thought process; GR-3 (Cheang et al.,
2025) excels in understanding complex instructions with abstract concepts, generalizes effectively
to novel objects and environments; WALL-OSS (Zhai et al., 2025) presents a coupled architecture,
unifying instruction reasoning, subgoal decomposition, and fine-grained action synthesis.

Overall, these large-scale policies suggest a convergent recipe in which language models structure
objectives and subgoals, diffusion processes synthesize trajectories and actions, and pre-training (on
general or robot-centric corpora) supplies the semantic and embodiment priors required for robust
generalization.

K.3 NON-DIFFUSION-BASED MODELS IN ROBOT LEARNING

While diffusion-based approaches have recently attracted significant attention, a wide range of non-
diffusion architectures continue to play a pivotal role in robot learning. These models typically
leverage sequence modeling, spatial reasoning, and large-scale VLA systems to build versatile ma-
nipulation and navigation capabilities. Unlike diffusion policies, which rely on iterative denois-
ing, non-diffusion frameworks often emphasize direct policy learning through MLP or transform-
ers (Vaswani et al., 2017), hierarchical control, or data scaling strategies. In what follows, we
summarize representative advances in manipulation and navigation, highlighting how non-diffusion
models complement and extend the landscape of robot learning.

Manipulation. A major thread in non-diffusion visuomotor learning frames control as sequence
modeling. ACT (Zhao et al., 2023) introduces a conditional encoder–decoder Transformer that pre-
dicts action sequences rather than single steps, attenuating compounding error over long horizons.
Building on this idea, MT-ACT (Bharadhwaj et al., 2024) augments training with task semantics to
learn a universal multi-task manipulator, while CogACT (Li et al., 2024a) couples a VLA backbone
so that language-guided cognition and low-level motor control are optimized in concert. Chunking
Causal Transformer (Zhang et al., 2025c) retains the ACT-style autoregressive policy but segments
trajectories into chunks, improving stability and sample efficiency for long sequences. Beyond
pure sequence decoding, several works enrich spatial grounding and 3D control: Act3D (Gervet &
Xiao, 2023) is a language-conditioned Transformer for 6-DoF manipulation that outputs continuous-
resolution 3D action maps via adaptive 3D computation; ICRT (Fu et al., 2024) performs genuine
in-context learning on a physical robot, leveraging a handful of contextual trajectories to execute
unseen tasks without additional training; and Spatial Policy (Liu et al., 2025c) explicitly models
scene geometry so that visual predictions align with executable end-effector motions. A comple-
mentary line scales VLA systems with data and hierarchy: RT-1 (Brohan et al., 2023) demonstrates
that Transformers trained on large, diverse robot datasets yield strong generalists; RT-2 (Zitkovich
et al., 2023) transfers web-derived vision–language knowledge into control; RT-X (O’Neill et al.,
2024) shows that pretraining on large-scale OXE data can set new performance bars, underscoring
the value of data scale; and RT-H (Belkhale et al., 2024) inserts a language-motion layer that bridges
high-level instructions and low-level actions through an explicit hierarchy. Practical systemization
and modality breadth are advanced by Beyond Sight (Jones et al., 2025) (Octo-style finetuning to
adapt generalist visuomotor policies to heterogeneous sensors), OpenVLA (Kim et al., 2025) (fully
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released training/testing recipes), and RoboVLM (Li et al., 2024c) (a design study distilling the
most consequential choices in VLA pipelines). Finally, emerging embodied models lift perception
and coordination to 3D and dexterous settings: 3D-VLA (Zhen et al., 2024) links 3D perception,
reasoning, and action via a generative world model; Bi-VLA (Gbagbe et al., 2024) targets coordi-
nated bimanual manipulation; LEO (Huang et al., 2024) acts as a multimodal generalist capable of
perceiving, grounding, reasoning, planning, and acting in 3D environments; SpatialBot (Cai et al.,
2025) strengthens spatial understanding by fusing RGB with depth; Lift3D (Jia et al., 2024) elevates
2D foundation features into robust 3D manipulation representations; and RoboDual (Bu et al., 2024)
unifies generalist breadth with specialist precision in a synergistic dual-policy framework.

Further advances focus on constraint-driven representations for manipulation. Relational Keypoint
Constraints (ReKep) (Huang et al., 2025c) define visually grounded constraints as Python functions
that map sets of 3D keypoints in the scene to numerical costs, providing a flexible interface for
encoding task-specific relations. VosPoser (Huang et al., 2023) leverages large language models to
extract affordances and constraints from natural language, composing 3D value maps in the obser-
vation space that guide robotic interactions in a structured manner.

Together, these works illustrate that non-diffusion architectures, particularly sequence models and
VLA systems, achieve strong manipulation generalization through long-horizon decoding, explicit
spatial grounding, data scaling, and modular hierarchy.

Navigation. For locomotion and navigation, non-diffusion approaches similarly exploit hierar-
chy, distillation, and language grounding. Cheng et al. (2024b) develop extreme legged parkour by
first training a teacher with reinforcement learning and then distilling its competence into a student
policy that runs purely on onboard depth, enabling agile behaviors in the wild. Mobility VLA (Chi-
ang et al., 2024) adopts a hierarchical design: long-context VLMs provide scene understanding
and commonsense reasoning at the high level, while a robust low-level navigator follows a topo-
logical graph to execute the plan. NaVid (Zhang et al., 2024b) turns streaming RGB video and a
natural-language instruction into a sequence of textual action directives that a robot can carry out,
emphasizing language-as-action for purely visual inputs. NaVILA (Cheng et al., 2024a) extends
this idea to legged visual–language-navigation (VLN) with two levels of control: a finetuned VLM
outputs mid-level language actions (e.g.,“turn right 30”), and a learned visual locomotion controller
faithfully executes those commands. These systems highlight a recurring pattern in non-diffusion
navigation: decompose high-level intent into compact linguistic subgoals, pair them with robust
low-level policies for accurate robot control.
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L FUTURE WORK

This work opens several avenues for future exploration. On the methodological side, a key direction
is to move beyond fixed test-time weight discretization. More adaptive weighting strategies could
be developed, such as reinforcement learning or gradient-based meta-optimization, to automatically
adjust convex weights across tasks and environments. Another natural extension is to scale from
dual-policy to multi-policy composition. Since naı̈vely increasing the number of composed policies
incurs a high computational cost, future work may explore feature sharing mechanisms or compact
latent representations to enable efficient integration. Finally, the design of stronger composition
operators remains an open challenge. Our initial results with superdiffusion highlight its potential,
but more efficient variants, as well as extensions that integrate with flow-based models, could further
amplify policy performance.

At a broader level, the principle of policy composition can potentially extend beyond diffusion-based
policies. The same compositional framework could be applied to diverse policy classes and archi-
tectures, enabling modular integration of heterogeneous skills. Moreover, while our experiments
focus on robotic VA and VLA in manipulation tasks, we anticipate a broader impact in related
domains. For instance, vision-language-navigation (VLN) tasks, such as some successful state-of-
the-art methods TrackVLA (Wang et al., 2025b) and LOVON (Peng et al., 2025), may also benefit
from compositional strategies to enhance generalization and robustness. Exploring these directions
would further validate GPC as a general paradigm for leveraging pre-trained models in complex
sequential decision-making domains.
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